59 research outputs found

    A Bio-Inspired Tensegrity Manipulator with Multi-DOF, Structurally Compliant Joints

    Full text link
    Most traditional robotic mechanisms feature inelastic joints that are unable to robustly handle large deformations and off-axis moments. As a result, the applied loads are transferred rigidly throughout the entire structure. The disadvantage of this approach is that the exerted leverage is magnified at each subsequent joint possibly damaging the mechanism. In this paper, we present two lightweight, elastic, bio-inspired tensegrity robotics arms which mitigate this danger while improving their mechanism's functionality. Our solutions feature modular tensegrity structures that function similarly to the human elbow and the human shoulder when connected. Like their biological counterparts, the proposed robotic joints are flexible and comply with unanticipated forces. Both proposed structures have multiple passive degrees of freedom and four active degrees of freedom (two from the shoulder and two from the elbow). The structural advantages demonstrated by the joints in these manipulators illustrate a solution to the fundamental issue of elegantly handling off-axis compliance.Comment: IROS 201

    Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures

    Get PDF
    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller

    Poly(2-isopropenyl-2-oxazoline) hydrogels for biomedical applications

    Get PDF
    Synthetic polymers have had a major impact on the biomedical field. However, all polymers have their advantages and disadvantages, so that the selection of a certain polymeric material always is a compromise with regard to many properties, such as synthetic accessibility, solubility, thermal properties, biocompatibility, and degradability. The development of novel polymers with superior properties for medical applications is the focus of many research groups. The present study highlights the use of poly(2-isopropenyl-2-oxazoline) (PiPOx), as biocompatible functional polymer to develop synthetic hydrogel materials using a simple straightforward synthesis protocol. A library of hydrogels was obtained by chemical cross-linking of PiPO(x), using eight different nontoxic and bio-based dicarboxylic acids. The equilibrium swelling degree of the final material can be modulated by simple modification of the composition of the reaction mixture, including the polymer concentration in the feed ratio between the 2-oxazoline pendent groups and the carboxylic acid groups as well as the cross-linker length. The hydrogels with the highest water uptake were selected for further investigations regarding their potential use as biomaterials. We evaluated the thermoresponsiveness, the pH degradability under physiological conditions, and demonstrated proof-of-concept drug delivery experiments. The in vitro cellular studies demonstrated the noncytotoxic character of the PiPOx hydrogels, and their protein repellent properties, while mineralization studies revealed that such scaffolds do not promote mineralization/calcification phenomena. In view of these results, these hydrogels show potential use as ophthalmologic materials or in drug delivery applications

    Adhesive and molecular friction in tribological conjunctions

    Get PDF
    This thesis investigates the underlying causes of friction and ine ciency within an internal combustion engine, focusing on the ring-liner conjunction in the vicinity of the power-stroke top dead centre reversal. In such lubricated contacts, friction is the result of the interplay between numerous kinetics, with those at micro- and nano-scale interactions being signi cantly di erent than the ones at larger scales. A modi ed Elrod's cavitation algorithm is developed to determine the microscopic tribological characteristics of the piston ring-liner contact. Predicting lubricant tran- sient behaviour is critical when the inlet reversal leads to thin lms and inherent metal-to-metal interaction. The model clearly shows that cavitation at the trailing edge of the ring-liner contact generated pre-reversal, persists after reversal and pro- motes starvation and depletion of the oil lm. Hence, this will lead to boundary friction. A fractal based boundary friction model is developed for lightly loaded asperity con- tacts, separated by diminishing small lms, usually wetted by a layer of molecules adsorbed to the tips of the asperities. In nano-scale conjunctions, a lubricant layering e ect often takes place due to the smoothness of surfaces, which is governed by the surface and lubricant properties. A molecularly thin layer of lubricant molecules can adhere to the asperities, being the last barrier against direct surface contact. As a result, boundary friction (prevailing in such diminishing gaps) is actually determined by a combination of shearing of a thin adsorbed lm, adhesion of approaching as- perities and their plastic deformation. A model for physio-chemical hydrodynamic mechanism is successfully established, describing the formation of thin adsorbed lms between asperities. This model is e ectively integrated with separately devel- oped models that predict the adhesive and plastic contact of asperities.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride

    Get PDF
    The electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride is studied by measuring the voltage and temperature dependences of the current. The microstructure of the network is investigated by cross-sectional transmission electron microscopy. The multi-walled carbon nanotube network has an uniform spatial extension in the silicon nitride matrix. The current-voltage and resistance-temperature characteristics are both linear, proving the metallic behavior of the network. The I-V curves present oscillations that are further analyzed by computing the conductance-voltage characteristics. The conductance presents minima and maxima that appear at the same voltage for both bias polarities, at both 20 and 298 K, and that are not periodic. These oscillations are interpreted as due to percolation processes. The voltage percolation thresholds are identified with the conductance minima

    CRUX: a Compliant Robotic Upper-Extremity eXosuit for Lightweight, Portable, Multi-DoF Muscular Augmentation

    Get PDF
    Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the users movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the complexity of the underlying human body. In this paper, we present a compliant, robotic exosuit for upper-extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible design for portability. We also show how CRUX maintains full flexibility of the upper-extremities for its users while providing multi- DoF augmentative strength to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent

    Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters

    Get PDF
    The present work aims to study the influence of ammonium-quaternary monomers and chitosan, obtained from different sources, upon the effect of semi-interpenetrating polymer network (semi-IPN) hydrogels upon the removal of waterborne pathogens and bacteria from wastewater. To this end, the study was focused on using vinyl benzyl trimethylammonium chloride (VBTAC), a water-soluble monomer with known antibacterial properties, and mineral-enriched chitosan extracted from shrimp shells, to prepare the semi-IPNs. By using chitosan, which still contains the native minerals (mainly calcium carbonate), the study intends to justify that the stability and efficiency of the semi-IPN bactericidal devices can be modified and better improved. The new semi-IPNs were characterized for composition, thermal stability and morphology using well-known methods. Swelling degree (SD%) and the bactericidal effect assessed using molecular methods revealed that hydrogels made of chitosan derived from shrimp shell demonstrated the most competitive and promising potential for wastewater (WW) treatment.Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from WastewaterspublishedVersio

    Multilayer Techniques to Address Parameter Variation

    Get PDF
    As integrated-circuit technology continues to scale, process variation is becoming an issue that cannot be ignored at the microarchitecture and system levels. Process variation is particularly detrimental to a processor's frequency and leakage power. To solve this growing problem, solutions at different levels of the computing stack are needed. This thesis presents a couple of such solutions. The first solution, is a circuits technique that has important implications on the microarchitecture. It is based on the previously-proposed Fine-Grain Body Biasing (FGBB), where different parts of the processor chip are given a voltage bias that changes the speed and leakage properties of their transistors. Previous work proposed determining the optimal body bias voltages at manufacturing time and setting them permanently for the lifetime of the chip. In this thesis, I propose a new technique (called Dynamic FGBB - D-FGBB), which allows the continuous re-evaluation of the bias voltages to adapt to dynamic conditions. Within-die process variation causes individual cores in a Chip Multiprocessor (CMP) to differ substantially in both static power consumed and maximum frequency supported. In this environment, ignoring variation effects when scheduling applications or when managing power with Dynamic Voltage and Frequency Scaling (DVFS) is suboptimal. This thesis presents a set of variation-aware algorithms for application scheduling and power management. One such power management algorithm, uses linear programming to find the best voltage and frequency levels for each of the cores in the CMP ??????maximizing throughput at a given power budget

    Multilayer Techniques to Address Parameter Variation

    No full text
    91 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2008.Within-die process variation causes individual cores in a Chip Multiprocessor (CMP) to differ substantially in both static power consumed and maximum frequency supported. In this environment, ignoring variation effects when scheduling applications or when managing power with Dynamic Voltage and Frequency Scaling (DVFS) is suboptimal. This thesis presents a set of variation-aware algorithms for application scheduling and power management. One such power management algorithm, uses linear programming to find the best voltage and frequency levels for each of the cores in the CMP---maximizing throughput at a given power budget.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD
    corecore